论文标题
Dirichlet分布的Fisher-Rao几何形状
Fisher-Rao geometry of Dirichlet distributions
论文作者
论文摘要
在本文中,我们研究了Fisher-Rao指标引起的几何形状,这些几何形状在Dirichlet分布的参数空间上。我们表明,这个空间在地球上完成,并且在任何地方都具有负截面曲率。该应用的负曲率的一个重要结果是,在此几何形状中唯一定义了一组dirichlet分布的fr {é} chet平均值。
In this paper, we study the geometry induced by the Fisher-Rao metric on the parameter space of Dirichlet distributions. We show that this space is geodesically complete and has everywhere negative sectional curvature. An important consequence of this negative curvature for applications is that the Fr{é}chet mean of a set of Dirichlet distributions is uniquely defined in this geometry.