论文标题

实体对齐的邻里匹配网络

Neighborhood Matching Network for Entity Alignment

论文作者

Wu, Yuting, Liu, Xiao, Feng, Yansong, Wang, Zheng, Zhao, Dongyan

论文摘要

知识图之间的结构异质性是实体对齐的重要挑战。本文介绍了邻里匹配网络(NMN),这是一种用于应对结构异质性挑战的新型实体对齐框架。 NMN估计实体之间同时捕获拓扑结构和邻居差异的相似之处。它提供了两个创新的组件,以更好地学习实体对齐。它首先使用一种新颖的图抽样方法来提炼每个实体的区分邻域。然后,它采用了一个跨码头匹配模块,以共同编码给定实体对的邻域差异。这种策略使NMN能够有效地构建面向匹配的实体表示,同时忽略对对齐任务产生负面影响的嘈杂邻居。在三个实体对齐数据集上进行的广泛实验表明,NMN可以很好地估计更艰难的情况下的邻居相似性,并且显着胜过12种先前的最先进方法。

Structural heterogeneity between knowledge graphs is an outstanding challenge for entity alignment. This paper presents Neighborhood Matching Network (NMN), a novel entity alignment framework for tackling the structural heterogeneity challenge. NMN estimates the similarities between entities to capture both the topological structure and the neighborhood difference. It provides two innovative components for better learning representations for entity alignment. It first uses a novel graph sampling method to distill a discriminative neighborhood for each entity. It then adopts a cross-graph neighborhood matching module to jointly encode the neighborhood difference for a given entity pair. Such strategies allow NMN to effectively construct matching-oriented entity representations while ignoring noisy neighbors that have a negative impact on the alignment task. Extensive experiments performed on three entity alignment datasets show that NMN can well estimate the neighborhood similarity in more tough cases and significantly outperforms 12 previous state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源