论文标题
用于多视图集群的聚集神经网络
Agglomerative Neural Networks for Multi-view Clustering
论文作者
论文摘要
传统的多视图聚类方法通过最小化共识和子视图之间的成对差异来寻求观点共识。但是,成对比较不能准确地描绘出某些子视图是否可以进一步分析。为了应对上述挑战,我们提出了集聚性分析以近似最佳共识视图,从而描述了视图结构中的子视图。我们根据受约束的拉普拉斯等级提出聚集神经网络(ANN),直接群集多视图数据,同时避免了专用的后处理步骤(例如,使用k-means)。我们进一步扩展了ANN,并使用可学习的数据空间来处理复杂方案的数据。我们对四个流行数据集上几种最先进的多视图聚类方法的评估表明,ANN具有有希望的视图传感分析能力。我们进一步证明了ANN在分析复杂视图结构和扩展性中的能力,并解释了其数据驱动的修改的鲁棒性和有效性。
Conventional multi-view clustering methods seek for a view consensus through minimizing the pairwise discrepancy between the consensus and subviews. However, the pairwise comparison cannot portray the inter-view relationship precisely if some of the subviews can be further agglomerated. To address the above challenge, we propose the agglomerative analysis to approximate the optimal consensus view, thereby describing the subview relationship within a view structure. We present Agglomerative Neural Network (ANN) based on Constrained Laplacian Rank to cluster multi-view data directly while avoiding a dedicated postprocessing step (e.g., using K-means). We further extend ANN with learnable data space to handle data of complex scenarios. Our evaluations against several state-of-the-art multi-view clustering approaches on four popular datasets show the promising view-consensus analysis ability of ANN. We further demonstrate ANN's capability in analyzing complex view structures and extensibility in our case study and explain its robustness and effectiveness of data-driven modifications.