论文标题

深度学习的光谱反卷积:去除光谱PSF扩展的效果

Spectral deconvolution with deep learning: removing the effects of spectral PSF broadening

论文作者

Molnar, Momchil, Reardon, Kevin, Osborne, Christopher, Milić, Ivan

论文摘要

我们探索了从仪器获得的数据中恢复原始光谱线曲线的新方法,这些仪器的数据具有扩展或多言论光谱传输曲线的采样。这些技术是根据大熊太阳能天文台的快速成像太阳能光谱仪(FISS)光谱仪以及邓恩太阳能望远镜处的干涉二维光谱仪(IBIS)仪器在高空间分辨率上进行测试的。该方法可鲁棒地对视场的宽光谱传输曲线,以摄影精度小于1%,对各种太阳结构(颗粒,毛孔和孔)进行样本采样。该方法的结果和保真度在使用几种不同光谱分辨率模式获得的IBI的数据上测试。 该方法基于卷积神经网络(CNN),非常快,在CPU上每秒执行每秒$ 10^5 $ deconvolutions,$ 10^6 $ DECONVOLUTIONS每秒在NVIDIA TITAN RTX GPU上为带有40个波长样品的Spectrum。这种方法适用于从具有宽光谱传输曲线的仪器中解析大量数据,例如DKI太阳能望远镜(DKIST)上的可见可调滤波器(VTF)。我们还通过恢复具有理论多峰光谱传输曲线获得的光谱线轮廓来研究其对未来仪器的应用。 我们通过分析原始数据和多路复用数据的维度来进一步讨论这种切解方法的局限性。

We explore novel methods of recovering the original spectral line profiles from data obtained by instruments that sample those profiles with an extended or multipeaked spectral transmission profile. The techniques are tested on data obtained at high spatial resolution from the Fast Imaging Solar Spectrograph (FISS) grating spectrograph at the Big Bear Solar Observatory and from the Interferometric Bidimensional Spectrometer (IBIS) instrument at the Dunn Solar Telescope. The method robustly deconvolves wide spectral transmission profiles for fields of view sampling a variety of solar structures (granulation, plage and pores) with a photometrical precision of less than 1%. The results and fidelity of the method are tested on data from IBIS obtained using several different spectral resolution modes. The method, based on convolutional neural networks (CNN), is extremely fast, performing about $10^5$ deconvolutions per second on a CPU and $10^6$ deconvolutions per second on NVIDIA TITAN RTX GPU for a spectrum with 40 wavelength samples. This approach is applicable for deconvolving large amounts of data from instruments with wide spectral transmission profiles, such as the Visible Tunable Filter (VTF) on the DKI Solar Telescope (DKIST). We also investigate its application to future instruments by recovering spectral line profiles obtained with a theoretical multi-peaked spectral transmission profile. We further discuss the limitations of this deconvolutional approach through the analysis of the dimensionality of the original and multiplexed data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源