论文标题

松弛反应物:一个状态空间截断框架,以估计化学主方程的定量行为

Slack Reactants: A State-Space Truncation Framework to Estimate Quantitative Behavior of the Chemical Master Equation

论文作者

Kim, Jinsu, Dark, Jason, Enciso, German, Sindi, Suzanne

论文摘要

状态空间截断方法被广泛用于近似化学主方程的解决方案。尽管此类方法的大多数方法都集中在直接截断状态空间,但在这项工作中,我们建议通过引入\ emph {Slack {Slack Reacters}间接截断状态空间来修改基础化学反应网络。更具体地说,松弛反应物引入了扩展的化学反应网络,并根据用户定义的特性(例如质量保存)施加了截断方案。这种网络结构使我们能够证明原始模型的特殊属性的继承,例如不可约性和复杂的平衡。 我们使用Slack反应物施加的网络结构来证明固定分布和首次到达时间的收敛性。然后,我们提供了将我们的方法与固定有限状态投影和有限缓冲方法进行比较的示例。对于计算首次到达时间,我们的松弛反应物系统似乎比某些竞争方法更强大。

State space truncation methods are widely used to approximate solutions of the chemical master equation. While most methods of this kind focus on truncating the state space directly, in this work we propose modifying the underlying chemical reaction network by introducing \emph{slack reactants} that indirectly truncate the state space. More specifically, slack reactants introduce an expanded chemical reaction network and impose a truncation scheme based on user defined properties, such as mass-conservation. This network structure allows us to prove inheritance of special properties of the original model, such as irreducibility and complex balancing. We use the network structure imposed by slack reactants to prove the convergence of the stationary distribution and first arrival times. We then provide examples comparing our method with the stationary finite state projection and finite buffer methods. Our slack reactant system appears to be more robust than some competing methods with respect to calculating first arrival times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源