论文标题

拼图:迈向各种自动编码器中的平衡功能

Jigsaw-VAE: Towards Balancing Features in Variational Autoencoders

论文作者

Taghanaki, Saeid Asgari, Havaei, Mohammad, Lamb, Alex, Sanghi, Aditya, Danielyan, Ara, Custis, Tonya

论文摘要

VAE学到的潜在变量已将非常兴趣视为提取特征的一种无监督方法,然后可以将其用于下游任务。人们对在一个环境中学习的特征是否会跨越不同环境的问题越来越感兴趣。我们在这里证明,VAE潜在变量通常集中在某些因素上,而以其他因素为代价 - 在这种情况下,我们将这些功能称为``不平衡''。当在特征变化的环境中使用潜在变量时,特征失衡会导致泛化。同样,接受不平衡特征训练的潜在变量会诱导VAE产生较少的多样性(即偏向于主要特征)样本。为了解决这个问题,我们为VAE提出了一个正规化方案,我们证明了该方案实质上解决了特征不平衡问题。我们还引入了一个简单的指标,以测量生成图像中特征的平衡。

The latent variables learned by VAEs have seen considerable interest as an unsupervised way of extracting features, which can then be used for downstream tasks. There is a growing interest in the question of whether features learned on one environment will generalize across different environments. We demonstrate here that VAE latent variables often focus on some factors of variation at the expense of others - in this case we refer to the features as ``imbalanced''. Feature imbalance leads to poor generalization when the latent variables are used in an environment where the presence of features changes. Similarly, latent variables trained with imbalanced features induce the VAE to generate less diverse (i.e. biased towards dominant features) samples. To address this, we propose a regularization scheme for VAEs, which we show substantially addresses the feature imbalance problem. We also introduce a simple metric to measure the balance of features in generated images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源