论文标题

对存在规则的受限追逐终止:一种分层方法和实验

Restricted Chase Termination for Existential Rules: a Hierarchical Approach and Experimentation

论文作者

Karimi, Arash, Zhang, Heng, You, Jia-Huai

论文摘要

对存在规则的追逐过程是多个数据库应用程序的必不可少的工具,其中其终止可以保证这些任务的可决定性。以前的大多数研究都集中在Skolem Chase变体及其终止分析上。众所周知,只要给出数据库,限制的追逐变体是终止分析中更强大的工具。但是,由于关键数据库和类似技术行不通,因此全面终止提出了一个挑战。在本文中,我们开发了一种新颖的技术来表征受限追逐的所有可能长度周期的活跃性,这导致了有限的限制性追逐的制定,称为$ k $ - $ \ $ \ mathsf {safe}(φ)$。这种方法适用于任何有限的Skolem Chase,鉴定出具有环状条件。更普遍地,我们表明该方法可以应用于以前仅针对Skolem Chase定义的有限规则集的层次结构。 Web的本体集合集合的实验显示了所提出的方法在现实世界本体上的适用性。在逻辑编程(TPLP)的理论和实践中考虑的。

The chase procedure for existential rules is an indispensable tool for several database applications, where its termination guarantees the decidability of these tasks. Most previous studies have focused on the skolem chase variant and its termination analysis. It is known that the restricted chase variant is a more powerful tool in termination analysis provided a database is given. But all-instance termination presents a challenge since the critical database and similar techniques do not work. In this paper, we develop a novel technique to characterize the activeness of all possible cycles of a certain length for the restricted chase, which leads to the formulation of a parameterized class of the finite restricted chase, called $k$-$\mathsf{safe}(Φ)$. This approach applies to any class of finite skolem chase identified with a condition of acyclicity. More generally, we show that the approach can be applied to the hierarchy of bounded rule sets previously only defined for the skolem chase. Experiments on a collection of ontologies from the web show the applicability of the proposed methods on real-world ontologies. Under consideration in Theory and Practice of Logic Programming (TPLP).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源