论文标题
流程知识驱动的变更点检测用于使用机器学习的离散事件仿真模型的自动校准
Process Knowledge Driven Change Point Detection for Automated Calibration of Discrete Event Simulation Models Using Machine Learning
论文作者
论文摘要
用于复杂系统的离散事件模拟模型的初始开发和随后的校准需要准确识别动态变化的过程特征。现有数据驱动的变更点方法(DD-CPD)假设更改对系统是无关的,因此无法利用可用的过程知识。这项工作通过将变更点检测模型与机器学习和过程驱动的仿真建模相结合,提出了一个统一的过程驱动的多变量变更点检测(PD-CPD)的统一框架。 PD-CPD使用DD-CPD的更改点初始化后,使用仿真模型将系统级输出作为时间序列数据流生成,然后将其用于训练神经网络模型以预测系统特征和变更点。预测模型的准确性衡量了实际过程数据符合系统特征中模拟变更点的可能性。 PD-CPD迭代通过重复模拟和预测模型构建步骤来优化变更点,直到确定具有最大可能性的变更点的集合为止。使用急诊部案例研究,我们表明PD-CPD显着提高了DD-CPD估计值的变更点检测准确性,并且能够检测实际的变更点。
Initial development and subsequent calibration of discrete event simulation models for complex systems require accurate identification of dynamically changing process characteristics. Existing data driven change point methods (DD-CPD) assume changes are extraneous to the system, thus cannot utilize available process knowledge. This work proposes a unified framework for process-driven multi-variate change point detection (PD-CPD) by combining change point detection models with machine learning and process-driven simulation modeling. The PD-CPD, after initializing with DD-CPD's change point(s), uses simulation models to generate system level outputs as time-series data streams which are then used to train neural network models to predict system characteristics and change points. The accuracy of the predictive models measures the likelihood that the actual process data conforms to the simulated change points in system characteristics. PD-CPD iteratively optimizes change points by repeating simulation and predictive model building steps until the set of change point(s) with the maximum likelihood is identified. Using an emergency department case study, we show that PD-CPD significantly improves change point detection accuracy over DD-CPD estimates and is able to detect actual change points.