论文标题

重新审视代数的同伴和纤维的物体

Algebraically cofibrant and fibrant objects revisited

论文作者

Bourke, John, Henry, Simon

论文摘要

我们通过与弱模型类别一起工作,扩展了有关代数合成物体和原金对象上传输模型结构的所有已知结果。我们表明,对于可访问的弱模型类别,在代数合并和代数纤维纤维的对象的两个类别上总是有等效的弱模型结构。在其他假设下,这些转移的弱模型结构被证明是左,右或Quillen模型结构。通过结合两个结构,我们表明,每个组合弱模型类别都通过Quillen等价链连接到所有对象都是纤维的组合质量模型类别。

We extend all known results about transferred model structures on algebraically cofibrant and fibrant objects by working with weak model categories. We show that for an accessible weak model category there are always Quillen equivalent transferred weak model structures on both the categories of algebraically cofibrant and algebraically fibrant objects. Under additional assumptions, these transferred weak model structures are shown to be left, right or Quillen model structures. By combining both constructions, we show that each combinatorial weak model category is connected, via a chain of Quillen equivalences, to a combinatorial Quillen model category in which all objects are fibrant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源