论文标题
Rozansky-Witten库仑分支和对数结的几何形状
Rozansky-Witten geometry of Coulomb branches and logarithmic knot invariants
论文作者
论文摘要
通过使用非紧密目标空间研究Rozansky-Witten理论,我们发现了与不知道的结的新连接,其物理解释尚不清楚。这打开了几种新的途径,其中包括新的$ q $ series不变的3个manifolds,以及仿生的grassmanians和Akutsu-deguchi-ohtsuki结的概括。
By studying Rozansky-Witten theory with non-compact target spaces we find new connections with knot invariants whose physical interpretation was not known. This opens up several new avenues, which include a new formulation of $q$-series invariants of 3-manifolds in terms of affine Grassmannians and a generalization of Akutsu-Deguchi-Ohtsuki knot invariants.