论文标题

Rozansky-Witten库仑分支和对数结的几何形状

Rozansky-Witten geometry of Coulomb branches and logarithmic knot invariants

论文作者

Gukov, Sergei, Hsin, Po-Shen, Nakajima, Hiraku, Park, Sunghyuk, Pei, Du, Sopenko, Nikita

论文摘要

通过使用非紧密目标空间研究Rozansky-Witten理论,我们发现了与不知道的结的新连接,其物理解释尚不清楚。这打开了几种新的途径,其中包括新的$ q $ series不变的3个manifolds,以及仿生的grassmanians和Akutsu-deguchi-ohtsuki结的概括。

By studying Rozansky-Witten theory with non-compact target spaces we find new connections with knot invariants whose physical interpretation was not known. This opens up several new avenues, which include a new formulation of $q$-series invariants of 3-manifolds in terms of affine Grassmannians and a generalization of Akutsu-Deguchi-Ohtsuki knot invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源