论文标题

Feldus2angio:一种有条件的GAN结构,用于产生视网膜摄影的荧光素血管造影图像

Fundus2Angio: A Conditional GAN Architecture for Generating Fluorescein Angiography Images from Retinal Fundus Photography

论文作者

Kamran, Sharif Amit, Hossain, Khondker Fariha, Tavakkoli, Alireza, Zuckerbrod, Stewart Lee, Baker, Salah A., Sanders, Kenton M.

论文摘要

使用荧光素血管造影(FA)对视网膜血管变性进行临床诊断是一个耗时的过程,可以对患者造成严重的不良影响。血管造影需要插入可能导致严重不良反应的染料,甚至可能致命。当前,没有能够产生荧光素血管造影图像的非侵入性系统。但是,视网膜底摄影是一种无创的成像技术,可以在几秒钟内完成。为了消除对FA的需求,我们提出了一个条件生成对抗网络(GAN),以将底面图像转换为FA图像。所提出的GAN由一个能够产生高质量FA图像的新型残留块组成。这些图像是视网膜疾病鉴别诊断的重要工具,而无需侵入性手术具有可能的副作用。我们的实验表明,所提出的体系结构的表现优于其他最先进的生成网络。此外,我们提出的模型与实际血管造影无法区分更好的定性结果。

Carrying out clinical diagnosis of retinal vascular degeneration using Fluorescein Angiography (FA) is a time consuming process and can pose significant adverse effects on the patient. Angiography requires insertion of a dye that may cause severe adverse effects and can even be fatal. Currently, there are no non-invasive systems capable of generating Fluorescein Angiography images. However, retinal fundus photography is a non-invasive imaging technique that can be completed in a few seconds. In order to eliminate the need for FA, we propose a conditional generative adversarial network (GAN) to translate fundus images to FA images. The proposed GAN consists of a novel residual block capable of generating high quality FA images. These images are important tools in the differential diagnosis of retinal diseases without the need for invasive procedure with possible side effects. Our experiments show that the proposed architecture outperforms other state-of-the-art generative networks. Furthermore, our proposed model achieves better qualitative results indistinguishable from real angiograms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源