论文标题
金属添加剂制造中材料开发的机器学习
Machine Learning for Materials Developments in Metals Additive Manufacturing
论文作者
论文摘要
在金属添加剂制造(AM)中,材料和组件是在单个过程中同时制造的,因为金属层是在最终用途产品所需的近决赛拓扑上彼此制造的。因此,必须同时控制和理解数十至数百万种材料和零件设计的自由度。因此,金属AM是一种高度跨学科的技术,需要同步考虑物理,化学,材料科学,物理冶金,计算机科学,电气工程和机械工程。使用现代机器学习方法来建模这些自由度可以减少阐明金属AM科学的时间和成本,并优化这些复杂的多学科过程的工程。大多数金属开发不需要新的机器学习技术;在其他材料科学宗派中使用的人也将适用于AM。自2000年代初以来,密度功能理论(DFT)社区一直使用其中的密度理论(DFT),以评估元素和晶体结构的多种组合以发现新材料。该材料技术的综述介绍了通过金属AM的镜头介绍机器学习的基本数学和术语,然后研究了机器学习以推进金属AM的潜在用途,从而突出了与以前的材料科学和制造业相似的许多相似之处,同时还讨论了针对金属的新挑战和适用于金属的新挑战和适应。
In metals additive manufacturing (AM), materials and components are concurrently made in a single process as layers of metal are fabricated on top of each other in the near-final topology required for the end-use product. Consequently, tens to hundreds of materials and part design degrees of freedom must be simultaneously controlled and understood; hence, metals AM is a highly interdisciplinary technology that requires synchronized consideration of physics, chemistry, materials science, physical metallurgy, computer science, electrical engineering, and mechanical engineering. The use of modern machine learning approaches to model these degrees of freedom can reduce the time and cost to elucidate the science of metals AM and to optimize the engineering of these complex, multidisciplinary processes. New machine learning techniques are not needed for most metals AM development; those used in other sects of materials science will also work for AM. Most prolifically, the density functional theory (DFT) community has used many of them since the early 2000s for evaluating numerous combinations of elements and crystal structures to discover new materials. This materials technologies-focused review introduces the basic mathematics and terminology of machine learning through the lens of metals AM, and then examines potential uses of machine learning to advance metals AM, highlighting the many parallels to previous efforts in materials science and manufacturing while also discussing new challenges and adaptations specific to metals AM.