论文标题
在高电子温度下金属中的电子音波耦合
Electron-phonon coupling in metals at high electronic temperatures
论文作者
论文摘要
电子 - 音波耦合,是管理超快能量沉积后材料演化的最重要参数之一,但仍然是最尚未探索的参数。在这项工作中,我们应用了动态耦合方法来计算非平衡固体中的非绝热电子能量交换,其电子温度高于原子的电子温度。它被实施到结合分子动力学代码中,并用于研究各种元素金属中的电子偶联。开发的方法是一种通用方案,适用于高达几个电子伏特的电子温度,以及任意原子构型和动力学。我们证明了计算出的电子离子(电子 - phonon)耦合参数与高电动 - 温度方向上的可用实验数据非常吻合,从而验证了模型。这里研究了以下材料-FCC金属:AL,CA,Ni,Cu,Sr,Y,Zr,Rh,Pd,Pd,Ag,ag,ir,pt,au,pb; HCP金属:MG,SC,TI,CO,ZN,TC,RU,CD,HF,RE,OS; BCC金属:V,CR,FE,NB,MO,BA,TA,W;钻石立方晶格金属:SN; GA,IN,MN,TE和SE的特定情况;另外,半准石墨和半导体SI和GE。对于许多材料,我们提供了第一个和迄今为止的唯一估计电子偶联的电子温度,可以在各种模型中使用,用于模拟物质中的超快能量沉积。我们还讨论了耦合参数对原子质量,温度和密度的依赖性。
Electron-phonon coupling, being one of the most important parameters governing the material evolution after ultrafast energy deposition, yet remains the most unexplored one. In this work, we applied the dynamical coupling approach to calculate the nonadiabatic electron-ion energy exchange in nonequilibrium solids with the electronic temperature high above the atomic one. It was implemented into the tight-binding molecular dynamics code, and used to study electron-phonon coupling in various elemental metals. The developed approach is a universal scheme applicable to electronic temperatures up to a few electron-Volts, and to arbitrary atomic configuration and dynamics. We demonstrate that the calculated electron-ion (electron-phonon) coupling parameter agrees well with the available experimental data in high-electronic-temperature regime, validating the model. The following materials are studied here - fcc metals: Al, Ca, Ni, Cu, Sr, Y, Zr, Rh, Pd, Ag, Ir, Pt, Au, Pb; hcp metals: Mg, Sc, Ti, Co, Zn, Tc, Ru, Cd, Hf, Re, Os; bcc metals: V, Cr, Fe, Nb, Mo, Ba, Ta, W; diamond cubic lattice metals: Sn; specific cases of Ga, In, Mn, Te and Se; and additionally semimetal graphite and semiconductors Si and Ge. For many materials, we provide the first and so far the only estimation of the electron-phonon coupling at elevated electron temperatures, which can be used in various models simulating ultrafast energy deposition in matter. We also discuss the dependence of the coupling parameter on the atomic mass, temperature and density.