论文标题
在多种方面的最小定向超曲面的边界规律性
Boundary Regularity of Minimal Oriented Hypersurfaces on a Manifold
论文作者
论文摘要
在本文中,我们证明了riemannian歧管中最小取向的超出表面的所有边界点是规则的,也就是说,在任何边界点的邻域,最小表面是$ \ MATHCAL {C}^{1,\ frac14} $ submanifold带有边界。
In this article we prove that all boundary points of a minimal oriented hypersurface in a Riemannian manifold are regular, that is, in a neighborhood of any boundary point, the minimal surface is a $\mathcal{C}^{1, \frac14}$ submanifold with boundary.