论文标题
粗粒二阶响应理论
Coarse-grained Second Order Response Theory
论文作者
论文摘要
虽然可以在任何粗糙的粒子上应用的线性响应理论,该理论表现为波动耗散定理,但非线性响应理论从根本上具有微观性质。对于平衡系统的扰动,我们开发了一个精确的理论框架,用于分析使用路径融合形式主义,分析粗粒度可观察到时间依赖性扰动的非线性(二阶)响应。所得的表达涉及可观察到的粗粒途径重量的相关性。这些权重的时间对称部分以复杂的方式取决于路径和扰动协议。另外,马尔可维亚性的缺乏阻止了粗粒路径积分的切片。我们表明,可以克服这些困难,并且可以用与单步扰动相对应的路径权重表示响应函数。因此,这种形式主义导致了推断方案,其中测量粗粒变量的线性响应足以确定其二阶响应。我们用一个可以解决的四州模型和近临界的ISING模型来说明形式主义的有效性。
While linear response theory, manifested by the fluctuation dissipation theorem, can be applied at any level of coarse graining, nonlinear response theory is fundamentally of microscopic nature. For perturbations of equilibrium systems, we develop an exact theoretical framework for analyzing the nonlinear (second order) response of coarse grained observables to time-dependent perturbations, using a path-integral formalism. The resulting expressions involve correlations of the observable with coarse grained path weights. The time symmetric part of these weights depends on the paths and perturbation protocol in a complex manner; in addition, the absence of Markovianity prevents slicing of the coarse-grained path integral. We show that these difficulties can be overcome and the response function can be expressed in terms of path weights corresponding to a single-step perturbation. This formalism thus leads to an extrapolation scheme where measuring linear responses of coarse-grained variables suffices to determine their second order response. We illustrate the validity of the formalism with an exactly solvable four-state model and the near-critical Ising model.