论文标题
三角学SU(N)Richardson-Gaudin模型和耗散多级原子系统
Trigonometric SU(N) Richardson-Gaudin models and dissipative multi-level atomic systems
论文作者
论文摘要
我们得出了与马尔可夫储层接触的N级原子系统的精确解。以矢量为基础表达的最终的liouvillian映射到SU(N)三角理论richardson-gaudin模型,该模型的精确解决方案由一组非线性耦合方程式给出。对于n = 2(su(2)),我们恢复了物理的精确溶液。莱特牧师。 122,010401(2019)。然后,我们研究了三层原子系统的SU(3)情况,并讨论有限系统的稳态和耗散差距以及热力学极限的特性。
We derive the exact solution of a system of N-level atoms in contact with a Markovian reservoir. The resulting Liouvillian expressed in a vectorized basis is mapped to an SU(N) trigonometric Richardson-Gaudin model whose exact solution for the complete set of eigenmodes is given by a set of non-linear coupled equations. For N = 2 (SU(2)) we recover the exact solution of Phys. Rev. Lett. 122, 010401 (2019). We then study the SU(3) case for three-level atom systems and discuss the properties of the steady state and dissipative gaps for finite systems as well as for the thermodynamic limit.