论文标题
超导能对称性测定的多原子准粒子散射干扰
Multi-Atom Quasiparticle Scattering Interference for Superconductor Energy-Gap Symmetry Determination
论文作者
论文摘要
对最复杂的超导体的完整理论理解需要详细了解超导能量 - 能量 - $δ_\ mathbf {k}^α$,对于每个频段$α$的FERMI表面上的所有Momenta $ \ Mathbf {k} $。虽然有多种技术用于确定$ |δ_\ Mathbf {k}^α| $,但没有一般方法来测量$δ_\ Mathbf {k}^α$的签名值。然而,最近引入了一种基于基于单个非磁性杂质原子的超导式准粒子干扰(QPI)模式的新技术。原则上,这些图像的能量分辨和相分辨的傅立叶分析标识了连接所有k空间区域的波形,其中$Δ__\ mathbf {k}^α$具有相同或相反的符号。但是,使用单个孤立的杂质原子,从其精确的位置,必须在技术上测量散射干扰模式的空间阶段。在这里,我们介绍了这种方法与多种杂质原子一起使用的概括,并通过比较它生成的$δ_\ Mathbf {k}^α$与$δ__\ Mathbf {K}^α$生成的$δ_\ Mathbf {k}^α$确定的,从fese中的单个散射确定了$ s _ {$ s _ {\ pm pm pm} $ symsmetry Is Symertry Is Messmetry。最后,为了说明效用,我们使用了生命值的多原子技术,并在类似孔和电子的口袋之间找到散射干扰,如$δ_\ mathbf {k}^α$相反的符号。
Complete theoretical understanding of the most complex superconductors requires a detailed knowledge of the symmetry of the superconducting energy-gap $Δ_\mathbf{k}^α$, for all momenta $\mathbf{k}$ on the Fermi surface of every band $α$. While there are a variety of techniques for determining $|Δ_\mathbf{k}^α|$, no general method existed to measure the signed values of $Δ_\mathbf{k}^α$. Recently, however, a new technique based on phase-resolved visualization of superconducting quasiparticle interference (QPI) patterns centered on a single non-magnetic impurity atom, was introduced. In principle, energy-resolved and phase-resolved Fourier analysis of these images identifies wavevectors connecting all k-space regions where $Δ_\mathbf{k}^α$ has the same or opposite sign. But use of a single isolated impurity atom, from whose precise location the spatial phase of the scattering interference pattern must be measured is technically difficult. Here we introduce a generalization of this approach for use with multiple impurity atoms, and demonstrate its validity by comparing the $Δ_\mathbf{k}^α$ it generates to the $Δ_\mathbf{k}^α$ determined from single-atom scattering in FeSe where $s_{\pm}$ energy-gap symmetry is established. Finally, to exemplify utility, we use the multi-atom technique on LiFeAs and find scattering interference between the hole-like and electron-like pockets as predicted for $Δ_\mathbf{k}^α$ of opposite sign.