论文标题
理性拉格朗日浸入的捆绑量化和交集
Sheaf quantization and intersection of rational Lagrangian immersions
论文作者
论文摘要
我们研究了基于小束带的微局部理论,研究了理性的拉格朗日浸入cotangent束中。我们构建了理性拉格朗日沉浸式的捆绑量化,并研究了其在塔玛金类别中的特性。使用捆量量化,我们通过纯粹的毛茸茸的理论方法对位移能量和betti/cup长度估计值进行明确绑定。
We study rational Lagrangian immersions in a cotangent bundle, based on the microlocal theory of sheaves. We construct a sheaf quantization of a rational Lagrangian immersion and investigate its properties in Tamarkin category. Using the sheaf quantization, we give an explicit bound for the displacement energy and a Betti/cup-length estimate for the number of the intersection points of the immersion and its Hamiltonian image by a purely sheaf-theoretic method.