论文标题
关于功能领域和Prym品种的阿贝尔品种的理性点
Rational points on abelian varieties over function fields and Prym varieties
论文作者
论文摘要
在本文中,使用Prym品种概念的概述用于准标准品种的覆盖物,我们证明了Abelian品种的Mordell-Weil群的结构定理,这是功能领域的曲折,这是Abelian品种的曲折,这是Abelian品种的曲折,可覆盖不可降低的准磷式化品种。特别是,我们获得的重新灭绝是为高级雅各布人(投影线的封面)的构建做出的贡献。
In this paper, using a generalization of the notion of Prym variety for covers of quasi-projective varieties, we prove a structure theorem for the Mordell-Weil group of the abelian varieties over function fields that are twists of Abelian varieties by Galois covers of irreducible quasi-projective varieties. In particular, the resutls we obtain contribute in the construction of Jacobians (of covers of the projective line) of high rank.