论文标题

关于随机扰动的SIS模型的基本繁殖数不变性的注释

A note about the invariance of the basic reproduction number for stochastically perturbed SIS models

论文作者

Bernardi, Enrico, Lanconelli, Alberto

论文摘要

我们试图使用Wong-Zakai近似参数严格地证明是合理的,即[2]中提出的易感感染感染感染(SIS)随机微分方程。我们发现,根据这种方法,要考虑的“右”随机模型应该是[2]中分析的itô方程式的Stratonovich版本。令人惊讶的是,该替代模型列出了以下特征:表征解决方案的两个不同渐近方案的阈值值与描述经典SIS确定性方程的阈值相吻合。

We try to justify rigorously, using a Wong-Zakai approximation argument, the susceptible-infected-susceptible (SIS) stochastic differential equation proposed in [2]. We discover that according to this approach the "right" stochastic model to be considered should be the Stratonovich version of the Itô equation analyzed in [2]. Surprisingly, this alternative model presents the following feature: the threshold value characterizing the two different asymptotic regimes of the solution coincides with the one describing the classical SIS deterministic equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源