论文标题

简单的量子证明

Simpler Proofs of Quantumness

论文作者

Brakerski, Zvika, Koppula, Venkata, Vazirani, Umesh, Vidick, Thomas

论文摘要

量子性证明是一种证明(向经典验证者)证明量子设备可以执行具有可比较资源的经典设备无法执行的方法。提供量子性证明是构建有用的量子计算机的第一步。目前有三种显示量子性证明的方法:(i)反转经典的单向函数(例如,使用Shor's算法)。从技术上讲,这似乎是遥不可及的。 (ii)从经典的样本分布(例如玻色带采样)中进行采样。这可能是近期实验的范围,但是对于所有此类任务,已知的验证都需要指数时间。 (iii)基于加密假设的交互式协议。使用陷阱门方案可以进行有效的验证,并且实施似乎比(i)所需的资源要少得多,但比(ii)的资源要少得多。 在这项工作中,我们建议通过使用随机的Oracle启发式方法来简化(III)。 (我们注意到我们不应用菲亚特 - 沙米尔范式。)我们基于任何无诱重爪的功能给出了量子性的两种(挑战响应)证明。与早期的建议相反,我们不需要自适应的硬核位属性。这允许使用较小的安全参数和更多样化的计算假设(例如,误差),大大减少了成功演示所需的量子计算工作。

A proof of quantumness is a method for provably demonstrating (to a classical verifier) that a quantum device can perform computational tasks that a classical device with comparable resources cannot. Providing a proof of quantumness is the first step towards constructing a useful quantum computer. There are currently three approaches for exhibiting proofs of quantumness: (i) Inverting a classically-hard one-way function (e.g. using Shor's algorithm). This seems technologically out of reach. (ii) Sampling from a classically-hard-to-sample distribution (e.g. BosonSampling). This may be within reach of near-term experiments, but for all such tasks known verification requires exponential time. (iii) Interactive protocols based on cryptographic assumptions. The use of a trapdoor scheme allows for efficient verification, and implementation seems to require much less resources than (i), yet still more than (ii). In this work we propose a significant simplification to approach (iii) by employing the random oracle heuristic. (We note that we do not apply the Fiat-Shamir paradigm.) We give a two-message (challenge-response) proof of quantumness based on any trapdoor claw-free function. In contrast to earlier proposals we do not need an adaptive hard-core bit property. This allows the use of smaller security parameters and more diverse computational assumptions (such as Ring Learning with Errors), significantly reducing the quantum computational effort required for a successful demonstration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源