论文标题
几乎是riemannian歧管的小光谱包装
Virtually small spectral package of a Riemannian manifold
论文作者
论文摘要
对于封闭的可定向的riemannian歧管上的摩尔斯功能,它引入了{\ IT几乎是小光谱封装}的一个分析对象,该对象由该对{\ it riemannian Morse,morse function \}的有限分析量组成,原则上可以计算出来。一个人表明,他们确定了基础空间的{\ it扭转},这与谐波形式空间的尺寸相似,即谐波形式的空间的尺寸计算了基础空间的{\ it euler-poincaré特征},并扩展了{\ itpoincaréduality}在和谐形式之间的福音仪式和关闭数字之间的{\ itpoincaréduality}的范围。
For a Morse function on a closed orientable Riemannian manifold one introduces the {\it virtually small spectral package} an analytic object consisting of a finite number of analytic quantities derived from the pair, {\it Riemannian metric, Morse function\} which, in principle, can be calculated. One shows that they determine the {\it Torsion } of the underlying space, a parallel to the result that the dimensions of the spaces of harmonic forms calculate the {\it Euler-Poincaré characteristic} of the underlying space and extends the {\it Poincaré Duality} between harmonic forms and between Betti numbers for a closed oriented Riemannian manifold .