论文标题

P-Laplacian PDE的弱解决方案的持有人连续性具有VMO系数

Holder continuity of weak solutions of p-Laplacian PDE's with VMO coefficients

论文作者

Goodtich, C. S., Ragusa, m. A.

论文摘要

我们考虑$ p $ -laplacian pde \ begin {equation} \ nabla} \ nabla \ cdot \ cdot \ cdot \ big(a(x)e(x)| du | du | du | du |, $ x \inΩ\ subseteq \ mathbb {r}^{n} $,其中$ω$是打开和界限的。更一般地,我们考虑椭圆系统的解决方案\ begin {equation} \ nabla \ cdot \ left(a(x)g'\ big(a(x)| du | \ big)\ frac {du} {| du | |} {| du |} {| du |} \ right) \ begin {equination} \int_Ωg\ big(a(x)| du | \ big)\ dx。意味着它可能是不连续的。如果不假设$ x \ mapsto a(x)$具有任何弱的可区分性,我们表明每个$ 0 <α<1 $ in \ mathscr {c} _ {c} _ {\ text {loc}}}^{0,α}(ω)$。实际上,前面的结果是一个更普遍的结果的推论,该推论适用于功能\ begin {equation} \int_Ωf\ big(x,x,u,u,du \ big)\ dx \ dx \ dx \ notag \ end {equination {equination {qore},如果$ f $仅是渐近的convex。

We consider solutions $u\in W^{1,p}\big(Ω;\mathbb{R}^{N}\big)$ of the $p$-Laplacian PDE \begin{equation} \nabla\cdot\big(a(x)|Du|^{p-2}Du\big)=0,\notag \end{equation} for $x\inΩ\subseteq\mathbb{R}^{n}$, where $Ω$ is open and bounded. More generally, we consider solutions of the elliptic system \begin{equation} \nabla\cdot\left(a(x)g'\big(a(x)|Du|\big)\frac{Du}{|Du|}\right)=0\text{, }x\inΩ\notag \end{equation} as well as minimizers of the functional \begin{equation} \int_Ωg\big(a(x)|Du|\big)\ dx.\notag \end{equation} In each case, the coefficient map $a\ : \ Ω\rightarrow\mathbb{R}$ is only assumed to be of class $VMO(Ω)\cap L^{\infty}(Ω)$, which means that it may be discontinuous. Without assuming that $x\mapsto a(x)$ has any weak differentiability, we show that $u\in\mathscr{C}_{\text{loc}}^{0,α}(Ω)$ for each $0<α<1$. The preceding results are, in fact, a corollary of a much more general result, which applies to the functional \begin{equation} \int_Ωf\big(x,u,Du\big)\ dx\notag \end{equation} in case $f$ is only asymptotically convex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源