论文标题
列举连接的Feynman图的精确解决方案方法
An exact solution method for the enumeration of connected Feynman diagrams
论文作者
论文摘要
我们完全概括了与连接的Feynman图的计数有关的先前结果。我们使用生成函数方法,该方法编码各个连接图的WICK收缩组合。发现了针对任意数量的外腿的精确溶液,并为此微积分实现了一般算法。从这些解决方案中,我们计算出简单分析工具(Taylor扩展定理)的许多渐近扩展项。我们的方法在Feynman图列出的领域(或零维量子场理论)中提供了新的观点。
We completely generalize previous results related to the counting of connected Feynman diagrams. We use a generating function approach, which encodes the Wick contraction combinatorics of the respective connected diagrams. Exact solutions are found for an arbitrary number of external legs, and a general algorithm is implemented for this calculus. From these solutions, we calculate many asymptotics expansion terms for a simple analytical tool (Taylor expansion theorem). Our approach offers new perspectives in the realm of Feynman diagrams enumeration (or zero-dimensional quantum field theory).