论文标题

多路复用网络中相关的结构演化

Correlated structural evolution within multiplex networks

论文作者

Wu, Haochen, James, Ryan G., Crutchfield, James P., D'Souza, Raissa M.

论文摘要

许多天然,工程和社交系统可以使用分层网络的框架来表示,在该网络的框架中,每一层都捕获了同一组节点之间的不同类型的相互作用。对这种多重网络的研究是一个充满活力的研究领域。然而,缺乏了解如何量化对层对之间存在的相关性,而在它们的共进化中则存在更多的相关性。这种方法将使我们能够解决涉及功能,冗余和潜在中断等问题的基本问题。在这里,我们首先展示了多路复用网络的边缘集合如何用于构建一个关节概率分布的估计值,该概率分布描述了所有层上的边缘存在。然后,我们适应一种称为条件互信息的通用相关性的信息理论度量,该信息使用估计的关节概率分布来量化层之间存在的成对相关性。成对比较也可以是时间的,使我们能够确定某个层的知识是否可以提供有关另一层演化的其他信息。 我们分析了来自三个不同领域的数据集---经济,政治和航空公司网络 - - 证明如何确定结构的成对相关性以及如何确定层之间的动态演变,并表明异常可以作为冲击等重大事件的潜在指标。

Many natural, engineered, and social systems can be represented using the framework of a layered network, where each layer captures a different type of interaction between the same set of nodes. The study of such multiplex networks is a vibrant area of research. Yet, understanding how to quantify the correlations present between pairs of layers, and more so present in their co-evolution, is lacking. Such methods would enable us to address fundamental questions involving issues such as function, redundancy and potential disruptions. Here we show first how the edge-set of a multiplex network can be used to construct an estimator of a joint probability distribution describing edge existence over all layers. We then adapt an information-theoretic measure of general correlation called the conditional mutual information, which uses the estimated joint probability distribution, to quantify the pairwise correlations present between layers. The pairwise comparisons can also be temporal, allowing us to identify if knowledge of a certain layer can provide additional information about the evolution of another layer. We analyze datasets from three distinct domains---economic, political, and airline networks---to demonstrate how pairwise correlation in structure and dynamical evolution between layers can be identified and show that anomalies can serve as potential indicators of major events such as shocks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源