论文标题

无监督体育训练的特定领域损失设计:一种建模医疗ML解决方案的新方法

Domain-specific loss design for unsupervised physical training: A new approach to modeling medical ML solutions

论文作者

Burwinkel, Hendrik, Matz, Holger, Saur, Stefan, Hauger, Christoph, Evren, Ayse Mine, Hirnschall, Nino, Findl, Oliver, Navab, Nassir, Ahmadi, Seyed-Ahmad

论文摘要

如今,白内障手术是世界上最常进行的眼科手术。白内障是人类眼镜的发展性不透明,构成了世界上最常见的失明原因。在手术过程中,将镜头去除并用人工眼内镜头(IOL)取代。为了防止患者在手术后需要强大的视觉辅助工具,对插入的IOL的光学特性的精确预测至关重要。最近通过使用机器学习,从OCT设备获得的生物特征数据数据中,已经有很多活动来开发方法来预测这些特性。他们仅考虑生物识别数据或物理模型,但很少两者,并且经常忽略IOL几何形状。在这项工作中,我们提出了Opticnet,这是一种新型的光学折射网络,损耗函数和训练方案,该方案是无监督,特定于领域的,并且是出于身体动机的。我们使用单射线射线跟踪得出精确的光传播眼模型,并制定可区分损耗函数,将物理梯度反向网络中。此外,我们提出了一种新的转移学习程序,该程序允许在实际IOL患者病例的队列上对物理模型进行无监督的培训和网络进行微调。我们表明,我们的网络不仅优于接受标准程序训练的系统,而且在与两个生物识别数据集进行比较时,我们的方法在IOL计算中的当前状态优于当前的技术状态。

Today, cataract surgery is the most frequently performed ophthalmic surgery in the world. The cataract, a developing opacity of the human eye lens, constitutes the world's most frequent cause for blindness. During surgery, the lens is removed and replaced by an artificial intraocular lens (IOL). To prevent patients from needing strong visual aids after surgery, a precise prediction of the optical properties of the inserted IOL is crucial. There has been lots of activity towards developing methods to predict these properties from biometric eye data obtained by OCT devices, recently also by employing machine learning. They consider either only biometric data or physical models, but rarely both, and often neglect the IOL geometry. In this work, we propose OpticNet, a novel optical refraction network, loss function, and training scheme which is unsupervised, domain-specific, and physically motivated. We derive a precise light propagation eye model using single-ray raytracing and formulate a differentiable loss function that back-propagates physical gradients into the network. Further, we propose a new transfer learning procedure, which allows unsupervised training on the physical model and fine-tuning of the network on a cohort of real IOL patient cases. We show that our network is not only superior to systems trained with standard procedures but also that our method outperforms the current state of the art in IOL calculation when compared on two biometric data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源