论文标题
3D BousSinesQ方程的规律性标准
A regularity criterion to the 3d Boussinesq equations
论文作者
论文摘要
本文介绍了3D Boussinesq方程的弱解决方案的规律性标准,该方程在BESOV空间中的部分衍生物。证明弱解决方案$(u,θ)$是规则的 $(\ nabla_ {h} u,\ nabla_ {h}θ)\ in L^{\ frac {8} {3}}}}} {3}}}(0,t; \ dot {b} _ {b} _ {\ infty,\ infty,\ infty,\ infty,\ infty} 我们的结果改善并扩展了Fang-Qian的Navier-Stokes方程的众所周知的结果。
The paper deals with the regularity criterion for the weak solutions to the 3D Boussinesq equations in terms of the partial derivatives in Besov spaces. It is proved that the weak solution $(u,θ)$ becomes regular provided that $(\nabla_{h}u,\nabla_{h}θ)\in L^{\frac{8}{3}}(0,T;\dot{B}_{\infty ,\infty}^{-1}(\mathbb{R}^{3}))$ Our results improve and extend the well-known results by Fang-Qian for the Navier-Stokes equations.