论文标题
通过多重交互网络预测科学合作
Prediction of scientific collaborations through multiplex interaction networks
论文作者
论文摘要
链接预测算法可以帮助理解科学合作的结构和动态和科学的发展。但是,基于协作网络节点之间的相似性,可用的算法受这些网络中存在的链接有限的限制。在这项工作中,我们通过将Adamic-Adar方法推广到由任意数量的层组成的多重网络来减少后者的内在限制,这些网络编码了科学相互作用的各种形式。我们表明,新的度量标准的表现优于其他单层基于相似性的分数和以引用为代表的科学信用,并且以使用通用关键字的使用来衡量的共同利益可以预测新的合作。我们的工作为对动态推动科学合作的动态提供了更深入的理解铺平了道路,并为多重网络中的链接预测提供了一种新算法,可以应用于多个系统。
Link prediction algorithms can help to understand the structure and dynamics of scientific collaborations and the evolution of Science. However, available algorithms based on similarity between nodes of collaboration networks are bounded by the limited amount of links present in these networks. In this work, we reduce the latter intrinsic limitation by generalizing the Adamic-Adar method to multiplex networks composed by an arbitrary number of layers, that encode diverse forms of scientific interactions. We show that the new metric outperforms other single-layered, similarity-based scores and that scientific credit, represented by citations, and common interests, measured by the usage of common keywords, can be predictive of new collaborations. Our work paves the way for a deeper understanding of the dynamics driving scientific collaborations, and provides a new algorithm for link prediction in multiplex networks that can be applied to a plethora of systems.