论文标题
多稳态3细胞神经网络中的动力和分叉
Dynamics and bifurcations in multistable 3-cell neural networks
论文作者
论文摘要
我们揭示了由相互抑制的3细胞电路中的固有机制的一般性,该电路由简化的,低维的振荡性神经元组成,而不是详细的霍奇金huxley类型的振荡性神经元。返回神经元之间相位滞后地图的计算减少揭示了此类电路中的丰富节奏模式。我们执行详细的分叉分析,以显示这种节奏如何随着单个细胞的参数和突触而变化,如何出现,消失并获得或失去稳定性。
We disclose the generality of the intrinsic mechanisms underlying multistability in reciprocally inhibitory 3-cell circuits composed of simplified, low-dimensional models of oscillatory neurons, as opposed to those of a detailed Hodgkin- Huxley type . The computational reduction to return maps for the phase-lags between neurons reveals a rich multiplicity of rhythmic patterns in such circuits. We perform a detailed bifurcation analysis to show how such rhythms can emerge, disappear, and gain or lose stability, as the parameters of the individual cells and the synapses are varied.