论文标题
相互作用的多组分黑暗部门的现象学后果
Phenomenological consequences of an interacting multicomponent dark sector
论文作者
论文摘要
我们考虑了一个黑暗扇区模型,该模型包含在不间断的$ u(1)$仪表相互作用下充电的稳定费物,并以无质量的深色光子作为力载体,并通过标量信使与普通物质相互作用。我们通过求解一组跟踪不同物种数量密度的耦合玻尔兹曼方程,以及黑暗和可见扇区之间的熵和能量交流,研究其早期宇宙的演变。在现象学上可行的实现包括:i)扮演暗物质候选者角色的重量(1 tev或更多)Lepton般的黑暗效率,其各种生产机制都取决于深色可见区域的强度; ii)光(几十几十GEV)的光线(几十千ive)像夸克一样的深色费米子,稳定但被抑制的遗物密度; iii)由于暗光子而导致的宇宙中的额外辐射分量,温度受到宇宙微波背景数据的限制,进而防止黑暗的费米子比大约1 GEV轻。对我们方案的额外约束源于暗物质直接检测搜索:核上的弹性散射是由偶极子或由标准模型或暗光子介导的电荷半径相互作用驱动的,但是在这种情况下通常假定,这些效果并不总是主导的。对下一代探测器的投影敏感性覆盖了可行参数空间的很大一部分,并且相对于依赖于模型依赖性约束,这些约束源自Leptons的磁偶极矩和恒星系统的冷却。
We consider a dark sector model containing stable fermions charged under an unbroken $U(1)$ gauge interaction, with a massless dark photon as force carrier, and interacting with ordinary matter via scalar messengers. We study its early Universe evolution by solving a set of coupled Boltzmann equations that track the number density of the different species, as well as entropy and energy exchanges between the dark and visible sectors. Phenomenologically viable realizations include: i) a heavy (order 1 TeV or more) lepton-like dark fermion playing the role of the dark matter candidate, with various production mechanisms active depending on the strength of the dark-visible sector portal; ii) light (few GeV to few tens of GeV) quark-like dark fermions, stable but with suppressed relic densities; iii) an extra radiation component in Universe due to dark photons, with temperature constrained by cosmic microwave background data, and in turn preventing dark fermions to be lighter than about 1 GeV. Extra constraints on our scenario stem from dark matter direct detection searches: the elastic scattering on nuclei is driven by dipole or charge radius interactions mediated by either Standard Model or dark photons, providing long-range effects which, however, are not always dominant, as usually assumed in this context. Projected sensitivities for next-generation detectors cover a significant portion of the viable parameter space and are competitive with respect to the model-dependent constraints derived from the magnetic dipole moments of leptons and cooling of stellar systems.