论文标题
抛物线系统的规律性,梯度和应用中具有关键的增长
Regularity for parabolic systems with critical growth in the gradient and applications
论文作者
论文摘要
由于几何流量出现的问题的促进,我们证明了局部和非局部方程系统的几个规律性结果,适应抛物线案例,这是由于咖啡雷利引起的一个整洁的论点。这项工作的几何动机来自最近在具有自由边界的理论谐波图中产生的作品。我们证明了弱解决方案的Hölder规律性。
Motivated by problems arising in geometric flows, we prove several regularity results for systems of local and nonlocal equations, adapting to the parabolic case a neat argument due to Caffarelli. The geometric motivation of this work comes from recent works arising in the theory harmonic maps with free boundary in particular. We prove Hölder regularity of weak solutions.