论文标题
摊销的贝叶斯推断对认知模型
Amortized Bayesian Inference for Models of Cognition
论文作者
论文摘要
随着认知模型的复杂性和参数数量的增长,使用标准方法的贝叶斯推断可能会变得棘手,尤其是当数据生成模型是未知的分析形式时。使用专门的神经网络体系结构基于模拟推断的最新进展避免了许多以前的贝叶斯计算问题。此外,由于这些特殊的神经网络估计器的属性,通过模拟训练网络的努力在随后的评估中摊销,这些评估可以重新利用多个数据集和多个研究人员的同一网络。但是,到目前为止,这些方法在认知科学和心理学中的主要原因很少,尽管它们非常适合解决各种各样的建模问题。通过这项工作,我们提供了对摊销的贝叶斯参数估计和模型比较的一般介绍,并证明了所提出的方法在众所周知的棘手响应时间模型上的适用性。
As models of cognition grow in complexity and number of parameters, Bayesian inference with standard methods can become intractable, especially when the data-generating model is of unknown analytic form. Recent advances in simulation-based inference using specialized neural network architectures circumvent many previous problems of approximate Bayesian computation. Moreover, due to the properties of these special neural network estimators, the effort of training the networks via simulations amortizes over subsequent evaluations which can re-use the same network for multiple datasets and across multiple researchers. However, these methods have been largely underutilized in cognitive science and psychology so far, even though they are well suited for tackling a wide variety of modeling problems. With this work, we provide a general introduction to amortized Bayesian parameter estimation and model comparison and demonstrate the applicability of the proposed methods on a well-known class of intractable response-time models.