论文标题
交叉对称BCJ树分子的有效计算
Efficient Calculation of Crossing Symmetric BCJ Tree Numerators
论文作者
论文摘要
在本文中,我们提出了一种改进的方法,用于直接计算(Super-)Yang-Mills和Yang-Mills-Scalar理论中的双拷贝兼容树分子。我们的新方案摆脱了对参考顺序的任何明确依赖性,将交叉对称性的形式恢复到分子。反过来,这提高了算法的计算效率,使我们能够远远超出可使用基于参考顺序的方法访问的外部粒子数量。通过从正向限制对一环BCJ分子的平行研究的动机,我们探索了包括一对费米子的概括。为了提高新算法的访问性,我们提供了一个实现分子结构的Mathematica软件包。计算的结构还可以直接引入最小耦合的质量颗粒,这些颗粒可能对经典和量子重力的未来计算有用。
In this paper, we propose an improved method for directly calculating double-copy-compatible tree numerators in (super-)Yang-Mills and Yang-Mills-scalar theories. Our new scheme gets rid of any explicit dependence on reference orderings, restoring a form of crossing symmetry to the numerators. This in turn improves the computational efficiency of the algorithm, allowing us to go well beyond the number of external particles accessible with the reference order based methods. Motivated by a parallel study of one-loop BCJ numerators from forward limits, we explore the generalization to include a pair of fermions. To improve the accessiblity of the new algorithm, we provide a Mathematica package that implements the numerator construction. The structure of the computation also provides for a straightforward introduction of minimally-coupled massive particles potentially useful for future computations in both classical and quantum gravity.