论文标题

一维洛伦兹样扩展地图的相变

Phase Transitions for one-dimensional Lorenz-like expanding Maps

论文作者

Gouveia, M. R. A., Oler, J. G.

论文摘要

给定一维洛伦兹的扩展地图,我们证明条件\ linebreak $ p_ {top}(ϕ,ϕ,\ partial \ mathcal {p},\ ell)<p_ {top}(top}(top}(ϕ,\ ell)$ $ ϕ:[0,1] \ longrightArrow \ Mathbb {r} $。我们将其应用于证明准霍德连续电位(有关定义,请参见第2.2小节)最多具有一个平衡度量,我们构建了一个连续但不是Hölder的家族,也不是弱的Hölder连续潜力,我们观察到相位过渡。实际上,该类包括所有霍尔德和弱 - 霍尔德的连续潜力,并形成开放式和[2]。

Given an one-dimensional Lorenz-like expanding map we prove that the condition\linebreak $P_{top}(ϕ,\partial \mathcal{P},\ell)<P_{top}(ϕ,\ell)$ (see, subsection 2.4 for definition), introduced by Buzzi and Sarig in [1] is satisfied for all continuous potentials $ϕ:[0,1]\longrightarrow \mathbb{R}$. We apply this to prove that quasi-Hölder-continuous potentials (see, subsection 2.2 for definition) have at most one equilibrium measure and we construct a family of continuous but not Hölder and neither weak Hölder continuous potentials for which we observe phase transitions. Indeed, this class includes all Hölder and weak-Hölder continuous potentials and form an open and [2].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源