论文标题

深散射花键:基于学习的医学X射线散射估计B-Splines

Deep Scatter Splines: Learning-Based Medical X-ray Scatter Estimation Using B-splines

论文作者

Roser, Philipp, Birkhold, Annette, Preuhs, Alexander, Syben, Christopher, Strobel, Norbert, Korwarschik, Markus, Fahrig, Rebecca, Maier, Andreas

论文摘要

在文献中,通过软件代替硬件以补偿扁平X射线成像中散射的辐射的想法在文献中已经确定。最近,基于深度学习的图像翻译方法(最著名的是U-NET)已出现以进行散射估计。与基于模型的方法相比,这些产生的改进相当大。但是,此类网络涉及需要考虑的潜在缺点。首先,它们以数据为导向的方式接受了培训,而无需使用先验知识和X射线物理学。其次,由于其高参数复杂性,深度神经网络的有效性很难评估。为了避免这些问题,我们在这里介绍一个替代函数,以模型X射线散射分布,该分布可以用很少的参数表示。我们可以从经验上表明,立方B型序列非常适合诊断能量状态中的X射线散射。基于这些发现,我们提出了一个精益卷积编码器结构,该体系结构从X射线投影图像中提取局部散点特征。这些特征使用约束的加权矩阵产生的样条系数将模拟散射分布的固定矩阵嵌入全局环境中。在使用17个胸部数据集的首次模拟研究中,我们可以证明我们的方法和基于U-NET的最新状态达到了相同的精度。但是,我们可以通过较少参数的数量级来实现这些可比较的结果,同时确保不操纵高频信息。

The idea of replacing hardware by software to compensate for scattered radiation in flat-panel X-ray imaging is well established in the literature. Recently, deep-learningbased image translation approaches, most notably the U-Net, have emerged for scatter estimation. These yield considerable improvements over model-based methods. Such networks, however, involve potential drawbacks that need to be considered. First, they are trained in a data-driven fashion without making use of prior knowledge and X-ray physics. Second, due to their high parameter complexity, the validity of deep neural networks is difficult to assess. To circumvent these issues, we introduce here a surrogate function to model X-ray scatter distributions that can be expressed by few parameters. We could show empirically that cubic B-splines are well-suited to model X-ray scatter in the diagnostic energy regime. Based on these findings, we propose a lean convolutional encoder architecture that extracts local scatter characteristics from X-ray projection images. These characteristics are embedded into a global context using a constrained weighting matrix yielding spline coefficients that model the scatter distribution. In a first simulation study with 17 thorax data sets, we could show that our method and the U-Net-based state of the art reach about the same accuracy. However, we could achieve these comparable outcomes with orders of magnitude fewer parameters while ensuring that not high-frequency information gets manipulated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源