论文标题
奇怪的等级参与者 - 批判性的增强学习
Curious Hierarchical Actor-Critic Reinforcement Learning
论文作者
论文摘要
分层抽象和好奇心驱动的探索是当前强化学习方法中的两个常见范式,将困难问题分解为一系列简单的问题并克服奖励稀疏性。但是,缺乏将这些范式结合在一起的方法,目前尚不清楚好奇心是否也有助于执行层次抽象。作为一种新颖性和科学的贡献,我们解决了这个问题,并开发了一种将层次强化学习与好奇心结合在一起的方法。在此,我们通过前向模型扩展了当代等级行为者 - 批评方法,以发展好奇心的等级概念。我们在几个连续的空间环境中证明了好奇心可以使大多数研究的基准问题问题的学习绩效和成功率翻了一番。我们还提供源代码和补充视频。
Hierarchical abstraction and curiosity-driven exploration are two common paradigms in current reinforcement learning approaches to break down difficult problems into a sequence of simpler ones and to overcome reward sparsity. However, there is a lack of approaches that combine these paradigms, and it is currently unknown whether curiosity also helps to perform the hierarchical abstraction. As a novelty and scientific contribution, we tackle this issue and develop a method that combines hierarchical reinforcement learning with curiosity. Herein, we extend a contemporary hierarchical actor-critic approach with a forward model to develop a hierarchical notion of curiosity. We demonstrate in several continuous-space environments that curiosity can more than double the learning performance and success rates for most of the investigated benchmarking problems. We also provide our source code and a supplementary video.