论文标题

关于一组长度的系统的无与伦比

On the incomparability of systems of sets of lengths

论文作者

Geroldinger, Alfred, Schmid, Wolfgang

论文摘要

让$ h $是一个有限级组$ g $的krull monoid,以使每个班级都包含一个主要的除数。我们考虑所有长度的$ h $的系统$ \ natcal l(h)$,并在$ \ m nathcal l(h)$包含或包含在系统$ \ Mathcal l(h')$中的krull monoid $ h'$中的系统$ h'$中,有限类$ g'$ g'$,所有班级和davenport constant $ \ $ \ $ \ $ \ $ \ n d(g)。除其他外,我们表明,如果$ g $要么是订单$ m \ ge 7 $或基本$ 2 $ 2 $ - 等级$ m-1 \ ge 6 $,而$ g'$是任何非同质到$ g $的群体(H')$无与伦比。

Let $H$ be a Krull monoid with finite class group $G$ such that every class contains a prime divisor. We consider the system $\mathcal L (H)$ of all sets of lengths of $H$ and study when $\mathcal L (H)$ contains or is contained in a system $\mathcal L (H')$ of a Krull monoid $H'$ with finite class group $G'$, prime divisors in all classes and Davenport constant $\mathsf D (G')=\mathsf D (G)$. Among others, we show that if $G$ is either cyclic of order $m \ge 7$ or an elementary $2$-group of rank $m-1 \ge 6$, and $G'$ is any group which is non-isomorphic to $G$ but with Davenport constant $\mathsf D (G')=\mathsf D (G)$, then the systems $\mathcal L (H)$ and $\mathcal L (H')$ are incomparable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源