论文标题

光滑的非注射仿射空间的非标准式模棱两可的完成

Smooth non-projective equivariant completions of affine spaces

论文作者

Shakhmatov, Kirill

论文摘要

在本文中,我们将仿射空间$ \ mathbb {a}^n $构建的嵌入方式与翻译组的操作构建为一个完整的非预设式代数$ x $,用于所有$ n \ geq 3 $。感谢您的品种理论被用作这种结构的主要工具。在$ n = 3 $的情况下,我们描述了品种$ x $上的轨道结构。

In this paper we construct an equivariant embedding of the affine space $\mathbb{A}^n$ with the translation group action into a complete non-projective algebraic variety $X$ for all $n \geq 3$. The theory of toric varieties is used as the main tool for this construction. In the case of $n = 3$ we describe the orbit structure on the variety $X$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源