论文标题

基于边界捆扎二元性和Anyon凝结测量拓扑顺序的唯一标识符

Measuring the Unique Identifiers of Topological Order Based on Boundary-Bulk Duality and Anyon Condensation

论文作者

Hai, Yong-Ju, Zhang, Ze, Zheng, Hao, Kong, Liang, Wu, Jiansheng, Yu, Dapeng

论文摘要

拓扑顺序是一个新的量子阶段,它超出了兰道的对称性范式。它的定义特征包括稳健的归化地面状态,远程纠缠和任何人。众所周知,$ r $ - 和$ f $ - amatrices可以用来唯一识别拓扑顺序。在本文中,我们探讨了一个基本问题:如何测量$ r $ - 和$ f $ - 标准?通过基于具有边界和最先进技术的曲折代码模型的量子模拟,我们表明编织物,即$ r $ - amatrices,可以完全由边界捆扎二元性和任何人凝结而导致边界激发的半辫子完全确定。 $ f $ - amatrices也可以在散射量子电路中测量,涉及两个不同订单的三个Anyons的融合。因此,我们提供了一个实验方案,用于测量拓扑顺序的唯一标识符。

A topological order is a new quantum phase that is beyond Landau's symmetry-breaking paradigm. Its defining features include robust degenerate ground states, long-range entanglement and anyons. It was known that $R$- and $F$-matrices, which characterize the fusion-braiding properties of anyons, can be used to uniquely identify topological order. In this article, we explore an essential question: how can the $R$- and $F$-matrices be experimentally measured? By using quantum simulations based on a toric code model with boundaries and state-of-the-art technology, we show that the braidings, i.e. the $R$-matrices, can be completely determined by the half braidings of boundary excitations due to the boundary-bulk duality and the anyon condensation. The $F$-matrices can also be measured in a scattering quantum circuit involving the fusion of three anyons in two different orders. Thus we provide an experimental protocol for measuring the unique identifiers of topological order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源