论文标题
横向场Ising模型中的量子淬灭动力学:链接的矩形簇中的数值扩展
Quantum quench dynamics in the transverse-field Ising model: A numerical expansion in linked rectangular clusters
论文作者
论文摘要
我们研究在不同晶格几何形状(例如链,两腿和三腿梯和二维方形晶格)上定义的横向场模型中的量子淬灭。从完全极化的初始状态开始,我们考虑了横向的动力学和淬灭的纵向磁化,从而将横向场的弱,强和临界值。为此,我们依靠数值链接群集扩展(NLCE)和实时纯状态的正向传播的有效组合。作为主要结果,我们证明了仅包含矩形簇的NLCE提供了一种有希望的方法,可以直接在热力学极限下研究二维量子多体系统的实时动力学。通过与文献中的现有数据进行比较,我们可以公布NLCES以时间尺度收敛的结果,这些结果与其他最先进的数值方法有竞争力。
We study quantum quenches in the transverse-field Ising model defined on different lattice geometries such as chains, two- and three-leg ladders, and two-dimensional square lattices. Starting from fully polarized initial states, we consider the dynamics of the transverse and the longitudinal magnetization for quenches to weak, strong, and critical values of the transverse field. To this end, we rely on an efficient combination of numerical linked cluster expansions (NLCEs) and a forward propagation of pure states in real time. As a main result, we demonstrate that NLCEs comprising solely rectangular clusters provide a promising approach to study the real-time dynamics of two-dimensional quantum many-body systems directly in the thermodynamic limit. By comparing to existing data from the literature, we unveil that NLCEs yield converged results on time scales which are competitive to other state-of-the-art numerical methods.