论文标题

EDD:有效可区分的DNN体系结构和实施共同搜索嵌入式AI解决方案

EDD: Efficient Differentiable DNN Architecture and Implementation Co-search for Embedded AI Solutions

论文作者

Li, Yuhong, Hao, Cong, Zhang, Xiaofan, Liu, Xinheng, Chen, Yao, Xiong, Jinjun, Hwu, Wen-mei, Chen, Deming

论文摘要

高质量的AI解决方案需要对AI算法的联合优化及其硬件实现。在这项工作中,我们是第一个提出完全同时,有效的可区分DNN体系结构和实现共同搜索(EDD)方法的人。我们通过将DNN搜索变量和硬件实现变量融合到一个解决方案空间,并最大化算法精度和硬件实现质量来提出共同搜索问题。相对于融合变量,该公式是可区分的,因此可以应用梯度下降算法以大大减少搜索时间。该公式还适用于具有不同目标的各种设备。在实验中,我们通过搜索三个代表性的DNN来证明我们的EDD方法论的有效性,以递归和管道架构的构建为目标GPU实现和FPGA实现。 EDD生产的每个模型都具有与Imagenet上神经体系结构搜索(NAS)方法搜索的最佳现有DNN模型相似的准确性,但是在12 GPU小时搜索范围内获得了卓越的性能。我们的DNN靶向GPU比无近距离报告的最新解决方案快1.40倍,而我们的DNN靶向FPGA的吞吐量比DNNBuilder中报道的最先进的解决方案高1.45倍。

High quality AI solutions require joint optimization of AI algorithms and their hardware implementations. In this work, we are the first to propose a fully simultaneous, efficient differentiable DNN architecture and implementation co-search (EDD) methodology. We formulate the co-search problem by fusing DNN search variables and hardware implementation variables into one solution space, and maximize both algorithm accuracy and hardware implementation quality. The formulation is differentiable with respect to the fused variables, so that gradient descent algorithm can be applied to greatly reduce the search time. The formulation is also applicable for various devices with different objectives. In the experiments, we demonstrate the effectiveness of our EDD methodology by searching for three representative DNNs, targeting low-latency GPU implementation and FPGA implementations with both recursive and pipelined architectures. Each model produced by EDD achieves similar accuracy as the best existing DNN models searched by neural architecture search (NAS) methods on ImageNet, but with superior performance obtained within 12 GPU-hour searches. Our DNN targeting GPU is 1.40x faster than the state-of-the-art solution reported in Proxyless, and our DNN targeting FPGA delivers 1.45x higher throughput than the state-of-the-art solution reported in DNNBuilder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源