论文标题

圆顶曲线

Domes over curves

论文作者

Glazyrin, Alexey, Pak, Igor

论文摘要

如果闭合的分段线性曲线由单位间隔组成,则称为积分曲线。肯尼恩的问题询问是否针对$ \ mathbb {r}^3 $中的每个积分曲线$γ$,都有一个超过$γ$的圆顶,即$γ$是否是多面体表面的边界,其面部的面是带有单位边缘的等边三角形。首先,当$γ$是四边形时,我们给出了代数必要的条件,从而为肯尼恩的问题提供了负面的解决方案。然后,我们证明圆顶存在于一组密集的积分曲线上。最后,我们在所有常规$ n $ gons上对圆顶进行了明确的结构。

A closed piecewise linear curve is called integral if it is comprised of unit intervals. Kenyon's problem asks whether for every integral curve $γ$ in $\mathbb{R}^3$, there is a dome over $γ$, i.e. whether $γ$ is a boundary of a polyhedral surface whose faces are equilateral triangles with unit edge lengths. First, we give an algebraic necessary condition when $γ$ is a quadrilateral, thus giving a negative solution to Kenyon's problem in full generality. We then prove that domes exist over a dense set of integral curves. Finally, we give an explicit construction of domes over all regular $n$-gons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源