论文标题
使用通用的加性模型来解释的学习级
Interpretable Learning-to-Rank with Generalized Additive Models
论文作者
论文摘要
学习到级模型的解释性是一个至关重要但相对不足的研究领域。可解释的排名模型的最新进展主要集中在为现有的黑盒排名模型生成事后解释,而构建具有透明和自我解释结构的本质上可解释的排名模型的替代选择仍然无法探索。在某些情况下(例如,由于法律或政策限制),需要开发完全理解的排名模型,在某些情况下,事后方法无法提供足够准确的解释。在本文中,我们通过将通用的加性模型(GAM)引入对象的任务,为固有解释的学习到秩。广义添加剂模型(GAM)是可解释的机器学习模型,并且已经在回归和分类任务上进行了广泛的研究。我们研究了如何将游戏扩展到可以处理项目级和列表级特征并提出新型GAM的新颖配方的排名模型。为了实例化排名游戏,我们使用神经网络,而不是传统的花纹或回归树。我们还表明,我们的神经排名游戏可以蒸馏成一组简单而紧凑的线性函数,这些功能更有效地在精确度损失的情况下进行评估。我们对三个数据集进行了实验,并表明我们提出的神经排名游戏可以比其他传统的GAM基准在保持相似的解释性的同时取得更好的性能。
Interpretability of learning-to-rank models is a crucial yet relatively under-examined research area. Recent progress on interpretable ranking models largely focuses on generating post-hoc explanations for existing black-box ranking models, whereas the alternative option of building an intrinsically interpretable ranking model with transparent and self-explainable structure remains unexplored. Developing fully-understandable ranking models is necessary in some scenarios (e.g., due to legal or policy constraints) where post-hoc methods cannot provide sufficiently accurate explanations. In this paper, we lay the groundwork for intrinsically interpretable learning-to-rank by introducing generalized additive models (GAMs) into ranking tasks. Generalized additive models (GAMs) are intrinsically interpretable machine learning models and have been extensively studied on regression and classification tasks. We study how to extend GAMs into ranking models which can handle both item-level and list-level features and propose a novel formulation of ranking GAMs. To instantiate ranking GAMs, we employ neural networks instead of traditional splines or regression trees. We also show that our neural ranking GAMs can be distilled into a set of simple and compact piece-wise linear functions that are much more efficient to evaluate with little accuracy loss. We conduct experiments on three data sets and show that our proposed neural ranking GAMs can achieve significantly better performance than other traditional GAM baselines while maintaining similar interpretability.