论文标题
关于有限类型和Hartman-Mycielski Construction组的注释
A note on the groups of finite type and the Hartman-Mycielski construction
论文作者
论文摘要
Ando,Matsuzawa,Thom和Törnquist通过构建了具有强大的操作员拓扑的一组统一运算符的示例,通过索林·帕帕(Sorin Popa)解决了一个问题,其左右均匀的结构重合,但并未嵌入到有限的有限的vonNeumann Algebra中。是否可以连接此类组。在这里,我们观察到,通过Hartman-Mycielski Construction从上述作者的示例中获得了连接的(实际上,同构与希尔伯特空间的同型)示例。
Ando, Matsuzawa, Thom, and Törnquist have resolved a problem by Sorin Popa by constructing an example of a Polish group of unitary operators with the strong operator topology, whose left and right uniform structures coincide, but which does not embed into the unitary group of a finite von Neumann algebra. The question remained whether such a group can be connected. Here we observe that a connected (in fact, homeomorphic to the Hilbert space) example is obtained from the example of the above authors via the Hartman--Mycielski construction.