论文标题

设计和评估太阳耀斑预测系统的框架

A Framework for Designing and Evaluating Solar Flare Forecasting Systems

论文作者

Cinto, T., Gradvohl, A. L. S., Coelho, G. P., da Silva, A. E. A.

论文摘要

太空天气的干扰可能会对几个领域产生负面影响,包括航空和航空航天,卫星,石油和天然气行业以及电气系统,导致经济和商业损失。太阳耀斑是可能影响地球大气的最重要事件,因此导致研究人员推动其预测努力。相关文献是全面的,并持有一些提议爆发预测的系统。但是,大多数技术都是量身定制的,并且是为特定目的而设计的,不允许研究人员在数据输入变化或预测算法中对其进行自定义。本文提出了一个设计,训练和评估耀斑预测系统的框架,以提出有希望的结果。我们提出的框架涉及模型和特征选择,随机超参数优化,数据重采样和操作设置下的评估。与基线预测相比,我们的框架产生了一些概念验证模型,预测$ \ geq m $类别在0.70至0.75之间,提前96小时发光,同时将该区域保持在ROC曲线的高度下。

Disturbances in space weather can negatively affect several fields, including aviation and aerospace, satellites, oil and gas industries, and electrical systems, leading to economic and commercial losses. Solar flares are the most significant events that can affect the Earth's atmosphere, thus leading researchers to drive efforts on their forecasting. The related literature is comprehensive and holds several systems proposed for flare forecasting. However, most techniques are tailor-made and designed for specific purposes, not allowing researchers to customize them in case of changes in data input or in the prediction algorithm. This paper proposes a framework to design, train, and evaluate flare prediction systems which present promising results. Our proposed framework involves model and feature selection, randomized hyper-parameters optimization, data resampling, and evaluation under operational settings. Compared to baseline predictions, our framework generated some proof-of-concept models with positive recalls between 0.70 and 0.75 for forecasting $\geq M$ class flares up to 96 hours ahead while keeping the area under the ROC curve score at high levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源