论文标题

拉蒙德部门的教训

Lessons from the Ramond sector

论文作者

Benjamin, Nathan, Lin, Ying-Hsuan

论文摘要

我们在(1+1)$ d $ fermionic综合场理论中重新审视了圆环分区功能的一致性,将模块化不变性/协方差的传统成分与对宿主化/效率二元性的现代化理解相结合。只需简单地检查经常登记的Ramond部门就可以学习各种课程。对于自举文献中的几个极端/扭结模块化函数,我们可以排除或识别基础理论。我们还通过计算Ramond部门的频谱来重新访问$ {\ cal n} = 1 $ Maloney-Witten分区功能,并将其进一步扩展到包括种子Ramond字符的模块化总和。最后,我们执行完整的$ {\ cal n} = 1 $ rns模块化引导程序,并获得有关存在相关变形的新通用结果,这些变形保留了不同量的超对称性。

We revisit the consistency of torus partition functions in (1+1)$d$ fermionic conformal field theories, combining traditional ingredients of modular invariance/covariance with a modernized understanding of bosonization/fermionization dualities. Various lessons can be learned by simply examining the oft-ignored Ramond sector. For several extremal/kinky modular functions in the bootstrap literature, we can either rule out or identify the underlying theory. We also revisit the ${\cal N} = 1$ Maloney-Witten partition function by calculating the spectrum in the Ramond sector, and further extending it to include the modular sum of seed Ramond characters. Finally, we perform the full ${\cal N} = 1$ RNS modular bootstrap and obtain new universal results on the existence of relevant deformations preserving different amounts of supersymmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源