论文标题

几乎是kenmotsu公制

Almost Kenmotsu metric as Ricci-Yamabe soliton

论文作者

Dey, Dibakar

论文摘要

本文的目的是表征两类几乎是肯莫茨的歧管,承认Ricci-Yamabe Soliton。结果表明,$(k,μ)'$ - 几乎是肯莫图斯(Kenmotsu)承认ricci-yamabe soliton或梯度ricci-yamabe soliton在Riemannian Product $ \ Mathbb {对于后来的情况,潜在的向量场与REEB矢量场点点呈连线。 Also, a $(k,μ)$-almost Kenmotsu manifold admitting certain Ricci-Yamabe soliton with the curvature property $Q \cdot P = 0$ is locally isometric to the hyperbolic space $\mathbb{H}^{2n+1}(-1)$ and the non-existense of the curvature property $Q \cdot R = 0$ is proved.

The object of the present paper is to characterize two classes of almost Kenmotsu manifolds admitting Ricci-Yamabe soliton. It is shown that a $(k,μ)'$-almost Kenmotsu manifold admitting a Ricci-Yamabe soliton or gradient Ricci-Yamabe soliton is locally isometric to the Riemannian product $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$. For the later case, the potential vector field is pointwise collinear with the Reeb vector field. Also, a $(k,μ)$-almost Kenmotsu manifold admitting certain Ricci-Yamabe soliton with the curvature property $Q \cdot P = 0$ is locally isometric to the hyperbolic space $\mathbb{H}^{2n+1}(-1)$ and the non-existense of the curvature property $Q \cdot R = 0$ is proved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源