论文标题

Masur-二次差异及其渐近学

Masur--Veech volumes of quadratic differentials and their asymptotics

论文作者

Yang, Di, Zagier, Don, Zhang, Youjin

论文摘要

基于Chen-Möller-sauvaget公式,我们应用了可集成系统的理论来得出三个方程,用于生成系列的Masur-deech量$ {\ rm vol} \,\ Mathcal {q} _ {q} _ {g,n} $与模块化的主要分层和Quadriations的主要分层相关联,并给出$ {\ rm vol} \,\ mathcal {q} _ {g,n} $的大属渐近属属的[12,4]和相关区域siegel-deech常数。

Based on the Chen--Möller--Sauvaget formula, we apply the theory of integrable systems to derive three equations for the generating series of the Masur--Veech volumes ${\rm Vol} \, \mathcal{Q}_{g,n}$ associated with the principal strata of the moduli spaces of quadratic differentials, and propose refinements of the conjectural formulas given in [12,4] for the large genus asymptotics of ${\rm Vol} \, \mathcal{Q}_{g,n}$ and of the associated area Siegel--Veech constants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源