论文标题
带有转子的受控刚性航天器的动力方程
Dynamical Equations of Controlled Rigid Spacecraft with a Rotor
论文作者
论文摘要
在本文中,我们将带有内部转子的受控刚性航天器视为常规点可减少常规控制的哈密顿(RCH)系统。在浮力和重力的重合和非偶然中心的情况下,我们首先给出了定期的点降低和减少受控刚性航天器的动态矢量场。然后,我们精确地得出了常规点还原的可控航天器 - 旋转系统的动力学矢量场的降低符号形式的几何约束条件,即通过计算详细计算的减少受控的飞船 - jacobi方程的两种类型的Hamilton-Jacobi方程。这些研究揭示了相位空间的几何结构,动力学矢量场和系统的控制的深刻内部关系。
In this paper, we consider the controlled rigid spacecraft with an internal rotor as a regular point reducible regular controlled Hamiltonian (RCH) system. In the cases of coincident and non-coincident centers of buoyancy and gravity, we first give the regular point reduction and the dynamical vector field of the reduced controlled rigid spacecraft-rotor system, respectively. Then, we derive precisely the geometric constraint conditions of the reduced symplectic form for the dynamical vector field of the regular point reducible controlled spacecraft-rotor system, that is, the two types of Hamilton-Jacobi equation for the reduced controlled spacecraft-rotor system by calculation in detail. These researches reveal the deeply internal relationships of the geometrical structures of phase spaces, the dynamical vector fields and controls of the system.