论文标题

Baer和Dual Baer模块的新方法

A new approach to Baer and dual Baer modules

论文作者

Ghaedan, N., Vedadi, M. R.

论文摘要

令$ r $为戒指。事实证明,当且仅当每个确切的序列$ 0 \ rightarrow x \ rightarrow m \ rightarrow y \ rightarrow y \ rightarrow 0 $ with $ y \ in $ cog $(m_r)$(m_r)$(resp。这表明(双重)Baer是莫里塔不变的财产。随着越来越多的应用程序,研究了$ r $ -module $ m^+ $ = hom $ _ {\ bbb z}}(m,{\ bbb q}/{\ bbb z})$的$ r $是von noumann常规环,如果$ r^+ $是baer $ r-r-r-r r r r $ mmod。研究并确定BAER(分别为双BAER)模块时,研究并确定了(弱)链条条件的BAER模块 是相互正交质数(分别联合总理)模块的直接总和。有限生成的双BAER模块在交换环上是研究

Let $R$ be a ring. It is proved that an $R$-module $M$ is Baer (resp. dual Baer) if and only if every exact sequence $0\rightarrow X\rightarrow M\rightarrow Y\rightarrow 0$ with $Y\in$ Cog$(M_R)$ (resp. $X\in$ Gen$(M_R)$) splits. This shows that being (dual) Baer is a Morita invariant property. As more applications, the Baer condition for the $R$-module $M^+ $ = Hom$_{\Bbb Z}(M,{\Bbb Q}/{\Bbb Z})$ is investigated and shown that $R$ is a von Neumann regular ring, if $R^+$ is a Baer $R$-module. Baer modules with (weak) chain conditions are studied and determined when a Baer (resp. dual baer) module is a direct sum of mutually orthogonal prime (resp. co-prime) modules. Finitely generated dual Baer modules over commutative rings are studeid

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源